pdf.js/src/core/crypto.js
Jonas Jenwald e73224ded7 Introduce Math.sumPrecise usage in the code-base
This is a new JavaScript feature that makes it easy to compute the sum of list of values; see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sumPrecise

This allows us to remove most cases of `Array.prototype.reduce`, which helps improve readability since that (in my opinion) often isn't the most intuitive code.
2025-03-23 13:03:56 +01:00

1227 lines
38 KiB
JavaScript

/* Copyright 2012 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {
bytesToString,
FormatError,
isArrayEqual,
PasswordException,
PasswordResponses,
shadow,
stringToBytes,
unreachable,
utf8StringToString,
warn,
} from "../shared/util.js";
import { calculateSHA384, calculateSHA512 } from "./calculate_sha_other.js";
import { Dict, isName, Name } from "./primitives.js";
import { calculateMD5 } from "./calculate_md5.js";
import { calculateSHA256 } from "./calculate_sha256.js";
import { DecryptStream } from "./decrypt_stream.js";
class ARCFourCipher {
constructor(key) {
this.a = 0;
this.b = 0;
const s = new Uint8Array(256);
const keyLength = key.length;
for (let i = 0; i < 256; ++i) {
s[i] = i;
}
for (let i = 0, j = 0; i < 256; ++i) {
const tmp = s[i];
j = (j + tmp + key[i % keyLength]) & 0xff;
s[i] = s[j];
s[j] = tmp;
}
this.s = s;
}
encryptBlock(data) {
let a = this.a,
b = this.b;
const s = this.s;
const n = data.length;
const output = new Uint8Array(n);
for (let i = 0; i < n; ++i) {
a = (a + 1) & 0xff;
const tmp = s[a];
b = (b + tmp) & 0xff;
const tmp2 = s[b];
s[a] = tmp2;
s[b] = tmp;
output[i] = data[i] ^ s[(tmp + tmp2) & 0xff];
}
this.a = a;
this.b = b;
return output;
}
decryptBlock(data) {
return this.encryptBlock(data);
}
encrypt(data) {
return this.encryptBlock(data);
}
}
class NullCipher {
decryptBlock(data) {
return data;
}
encrypt(data) {
return data;
}
}
class AESBaseCipher {
_s = new Uint8Array([
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16,
]);
_inv_s = new Uint8Array([
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0c, 0x7d,
]);
_mix = new Uint32Array([
0x00000000, 0x0e090d0b, 0x1c121a16, 0x121b171d, 0x3824342c, 0x362d3927,
0x24362e3a, 0x2a3f2331, 0x70486858, 0x7e416553, 0x6c5a724e, 0x62537f45,
0x486c5c74, 0x4665517f, 0x547e4662, 0x5a774b69, 0xe090d0b0, 0xee99ddbb,
0xfc82caa6, 0xf28bc7ad, 0xd8b4e49c, 0xd6bde997, 0xc4a6fe8a, 0xcaaff381,
0x90d8b8e8, 0x9ed1b5e3, 0x8ccaa2fe, 0x82c3aff5, 0xa8fc8cc4, 0xa6f581cf,
0xb4ee96d2, 0xbae79bd9, 0xdb3bbb7b, 0xd532b670, 0xc729a16d, 0xc920ac66,
0xe31f8f57, 0xed16825c, 0xff0d9541, 0xf104984a, 0xab73d323, 0xa57ade28,
0xb761c935, 0xb968c43e, 0x9357e70f, 0x9d5eea04, 0x8f45fd19, 0x814cf012,
0x3bab6bcb, 0x35a266c0, 0x27b971dd, 0x29b07cd6, 0x038f5fe7, 0x0d8652ec,
0x1f9d45f1, 0x119448fa, 0x4be30393, 0x45ea0e98, 0x57f11985, 0x59f8148e,
0x73c737bf, 0x7dce3ab4, 0x6fd52da9, 0x61dc20a2, 0xad766df6, 0xa37f60fd,
0xb16477e0, 0xbf6d7aeb, 0x955259da, 0x9b5b54d1, 0x894043cc, 0x87494ec7,
0xdd3e05ae, 0xd33708a5, 0xc12c1fb8, 0xcf2512b3, 0xe51a3182, 0xeb133c89,
0xf9082b94, 0xf701269f, 0x4de6bd46, 0x43efb04d, 0x51f4a750, 0x5ffdaa5b,
0x75c2896a, 0x7bcb8461, 0x69d0937c, 0x67d99e77, 0x3daed51e, 0x33a7d815,
0x21bccf08, 0x2fb5c203, 0x058ae132, 0x0b83ec39, 0x1998fb24, 0x1791f62f,
0x764dd68d, 0x7844db86, 0x6a5fcc9b, 0x6456c190, 0x4e69e2a1, 0x4060efaa,
0x527bf8b7, 0x5c72f5bc, 0x0605bed5, 0x080cb3de, 0x1a17a4c3, 0x141ea9c8,
0x3e218af9, 0x302887f2, 0x223390ef, 0x2c3a9de4, 0x96dd063d, 0x98d40b36,
0x8acf1c2b, 0x84c61120, 0xaef93211, 0xa0f03f1a, 0xb2eb2807, 0xbce2250c,
0xe6956e65, 0xe89c636e, 0xfa877473, 0xf48e7978, 0xdeb15a49, 0xd0b85742,
0xc2a3405f, 0xccaa4d54, 0x41ecdaf7, 0x4fe5d7fc, 0x5dfec0e1, 0x53f7cdea,
0x79c8eedb, 0x77c1e3d0, 0x65daf4cd, 0x6bd3f9c6, 0x31a4b2af, 0x3fadbfa4,
0x2db6a8b9, 0x23bfa5b2, 0x09808683, 0x07898b88, 0x15929c95, 0x1b9b919e,
0xa17c0a47, 0xaf75074c, 0xbd6e1051, 0xb3671d5a, 0x99583e6b, 0x97513360,
0x854a247d, 0x8b432976, 0xd134621f, 0xdf3d6f14, 0xcd267809, 0xc32f7502,
0xe9105633, 0xe7195b38, 0xf5024c25, 0xfb0b412e, 0x9ad7618c, 0x94de6c87,
0x86c57b9a, 0x88cc7691, 0xa2f355a0, 0xacfa58ab, 0xbee14fb6, 0xb0e842bd,
0xea9f09d4, 0xe49604df, 0xf68d13c2, 0xf8841ec9, 0xd2bb3df8, 0xdcb230f3,
0xcea927ee, 0xc0a02ae5, 0x7a47b13c, 0x744ebc37, 0x6655ab2a, 0x685ca621,
0x42638510, 0x4c6a881b, 0x5e719f06, 0x5078920d, 0x0a0fd964, 0x0406d46f,
0x161dc372, 0x1814ce79, 0x322bed48, 0x3c22e043, 0x2e39f75e, 0x2030fa55,
0xec9ab701, 0xe293ba0a, 0xf088ad17, 0xfe81a01c, 0xd4be832d, 0xdab78e26,
0xc8ac993b, 0xc6a59430, 0x9cd2df59, 0x92dbd252, 0x80c0c54f, 0x8ec9c844,
0xa4f6eb75, 0xaaffe67e, 0xb8e4f163, 0xb6edfc68, 0x0c0a67b1, 0x02036aba,
0x10187da7, 0x1e1170ac, 0x342e539d, 0x3a275e96, 0x283c498b, 0x26354480,
0x7c420fe9, 0x724b02e2, 0x605015ff, 0x6e5918f4, 0x44663bc5, 0x4a6f36ce,
0x587421d3, 0x567d2cd8, 0x37a10c7a, 0x39a80171, 0x2bb3166c, 0x25ba1b67,
0x0f853856, 0x018c355d, 0x13972240, 0x1d9e2f4b, 0x47e96422, 0x49e06929,
0x5bfb7e34, 0x55f2733f, 0x7fcd500e, 0x71c45d05, 0x63df4a18, 0x6dd64713,
0xd731dcca, 0xd938d1c1, 0xcb23c6dc, 0xc52acbd7, 0xef15e8e6, 0xe11ce5ed,
0xf307f2f0, 0xfd0efffb, 0xa779b492, 0xa970b999, 0xbb6bae84, 0xb562a38f,
0x9f5d80be, 0x91548db5, 0x834f9aa8, 0x8d4697a3,
]);
_mixCol = new Uint8Array(256).map((_, i) =>
i < 128 ? i << 1 : (i << 1) ^ 0x1b
);
constructor() {
if (
(typeof PDFJSDev === "undefined" || PDFJSDev.test("TESTING")) &&
this.constructor === AESBaseCipher
) {
unreachable("Cannot initialize AESBaseCipher.");
}
this.buffer = new Uint8Array(16);
this.bufferPosition = 0;
}
_expandKey(cipherKey) {
unreachable("Cannot call `_expandKey` on the base class");
}
_decrypt(input, key) {
let t, u, v;
const state = new Uint8Array(16);
state.set(input);
// AddRoundKey
for (let j = 0, k = this._keySize; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
for (let i = this._cyclesOfRepetition - 1; i >= 1; --i) {
// InvShiftRows
t = state[13];
state[13] = state[9];
state[9] = state[5];
state[5] = state[1];
state[1] = t;
t = state[14];
u = state[10];
state[14] = state[6];
state[10] = state[2];
state[6] = t;
state[2] = u;
t = state[15];
u = state[11];
v = state[7];
state[15] = state[3];
state[11] = t;
state[7] = u;
state[3] = v;
// InvSubBytes
for (let j = 0; j < 16; ++j) {
state[j] = this._inv_s[state[j]];
}
// AddRoundKey
for (let j = 0, k = i * 16; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
// InvMixColumns
for (let j = 0; j < 16; j += 4) {
const s0 = this._mix[state[j]];
const s1 = this._mix[state[j + 1]];
const s2 = this._mix[state[j + 2]];
const s3 = this._mix[state[j + 3]];
t =
s0 ^
(s1 >>> 8) ^
(s1 << 24) ^
(s2 >>> 16) ^
(s2 << 16) ^
(s3 >>> 24) ^
(s3 << 8);
state[j] = (t >>> 24) & 0xff;
state[j + 1] = (t >> 16) & 0xff;
state[j + 2] = (t >> 8) & 0xff;
state[j + 3] = t & 0xff;
}
}
// InvShiftRows
t = state[13];
state[13] = state[9];
state[9] = state[5];
state[5] = state[1];
state[1] = t;
t = state[14];
u = state[10];
state[14] = state[6];
state[10] = state[2];
state[6] = t;
state[2] = u;
t = state[15];
u = state[11];
v = state[7];
state[15] = state[3];
state[11] = t;
state[7] = u;
state[3] = v;
for (let j = 0; j < 16; ++j) {
// InvSubBytes
state[j] = this._inv_s[state[j]];
// AddRoundKey
state[j] ^= key[j];
}
return state;
}
_encrypt(input, key) {
const s = this._s;
let t, u, v;
const state = new Uint8Array(16);
state.set(input);
for (let j = 0; j < 16; ++j) {
// AddRoundKey
state[j] ^= key[j];
}
for (let i = 1; i < this._cyclesOfRepetition; i++) {
// SubBytes
for (let j = 0; j < 16; ++j) {
state[j] = s[state[j]];
}
// ShiftRows
v = state[1];
state[1] = state[5];
state[5] = state[9];
state[9] = state[13];
state[13] = v;
v = state[2];
u = state[6];
state[2] = state[10];
state[6] = state[14];
state[10] = v;
state[14] = u;
v = state[3];
u = state[7];
t = state[11];
state[3] = state[15];
state[7] = v;
state[11] = u;
state[15] = t;
// MixColumns
for (let j = 0; j < 16; j += 4) {
const s0 = state[j];
const s1 = state[j + 1];
const s2 = state[j + 2];
const s3 = state[j + 3];
t = s0 ^ s1 ^ s2 ^ s3;
state[j] ^= t ^ this._mixCol[s0 ^ s1];
state[j + 1] ^= t ^ this._mixCol[s1 ^ s2];
state[j + 2] ^= t ^ this._mixCol[s2 ^ s3];
state[j + 3] ^= t ^ this._mixCol[s3 ^ s0];
}
// AddRoundKey
for (let j = 0, k = i * 16; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
}
// SubBytes
for (let j = 0; j < 16; ++j) {
state[j] = s[state[j]];
}
// ShiftRows
v = state[1];
state[1] = state[5];
state[5] = state[9];
state[9] = state[13];
state[13] = v;
v = state[2];
u = state[6];
state[2] = state[10];
state[6] = state[14];
state[10] = v;
state[14] = u;
v = state[3];
u = state[7];
t = state[11];
state[3] = state[15];
state[7] = v;
state[11] = u;
state[15] = t;
// AddRoundKey
for (let j = 0, k = this._keySize; j < 16; ++j, ++k) {
state[j] ^= key[k];
}
return state;
}
_decryptBlock2(data, finalize) {
const sourceLength = data.length;
let buffer = this.buffer,
bufferLength = this.bufferPosition;
const result = [];
let iv = this.iv;
for (let i = 0; i < sourceLength; ++i) {
buffer[bufferLength] = data[i];
++bufferLength;
if (bufferLength < 16) {
continue;
}
// buffer is full, decrypting
const plain = this._decrypt(buffer, this._key);
// xor-ing the IV vector to get plain text
for (let j = 0; j < 16; ++j) {
plain[j] ^= iv[j];
}
iv = buffer;
result.push(plain);
buffer = new Uint8Array(16);
bufferLength = 0;
}
// saving incomplete buffer
this.buffer = buffer;
this.bufferLength = bufferLength;
this.iv = iv;
if (result.length === 0) {
return new Uint8Array(0);
}
// combining plain text blocks into one
let outputLength = 16 * result.length;
if (finalize) {
// undo a padding that is described in RFC 2898
const lastBlock = result.at(-1);
let psLen = lastBlock[15];
if (psLen <= 16) {
for (let i = 15, ii = 16 - psLen; i >= ii; --i) {
if (lastBlock[i] !== psLen) {
// Invalid padding, assume that the block has no padding.
psLen = 0;
break;
}
}
outputLength -= psLen;
result[result.length - 1] = lastBlock.subarray(0, 16 - psLen);
}
}
const output = new Uint8Array(outputLength);
for (let i = 0, j = 0, ii = result.length; i < ii; ++i, j += 16) {
output.set(result[i], j);
}
return output;
}
decryptBlock(data, finalize, iv = null) {
const sourceLength = data.length;
const buffer = this.buffer;
let bufferLength = this.bufferPosition;
// If an IV is not supplied, wait for IV values. They are at the start
// of the stream.
if (iv) {
this.iv = iv;
} else {
for (
let i = 0;
bufferLength < 16 && i < sourceLength;
++i, ++bufferLength
) {
buffer[bufferLength] = data[i];
}
if (bufferLength < 16) {
// Need more data.
this.bufferLength = bufferLength;
return new Uint8Array(0);
}
this.iv = buffer;
data = data.subarray(16);
}
this.buffer = new Uint8Array(16);
this.bufferLength = 0;
// starting decryption
this.decryptBlock = this._decryptBlock2;
return this.decryptBlock(data, finalize);
}
encrypt(data, iv) {
const sourceLength = data.length;
let buffer = this.buffer,
bufferLength = this.bufferPosition;
const result = [];
iv ||= new Uint8Array(16);
for (let i = 0; i < sourceLength; ++i) {
buffer[bufferLength] = data[i];
++bufferLength;
if (bufferLength < 16) {
continue;
}
for (let j = 0; j < 16; ++j) {
buffer[j] ^= iv[j];
}
// buffer is full, encrypting
const cipher = this._encrypt(buffer, this._key);
iv = cipher;
result.push(cipher);
buffer = new Uint8Array(16);
bufferLength = 0;
}
// saving incomplete buffer
this.buffer = buffer;
this.bufferLength = bufferLength;
this.iv = iv;
if (result.length === 0) {
return new Uint8Array(0);
}
// combining plain text blocks into one
const outputLength = 16 * result.length;
const output = new Uint8Array(outputLength);
for (let i = 0, j = 0, ii = result.length; i < ii; ++i, j += 16) {
output.set(result[i], j);
}
return output;
}
}
class AES128Cipher extends AESBaseCipher {
_rcon = new Uint8Array([
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a,
0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6,
0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10,
0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e,
0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02,
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb,
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a,
0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d,
]);
constructor(key) {
super();
this._cyclesOfRepetition = 10;
this._keySize = 160; // bits
this._key = this._expandKey(key);
}
_expandKey(cipherKey) {
const b = 176;
const s = this._s;
const rcon = this._rcon;
const result = new Uint8Array(b);
result.set(cipherKey);
for (let j = 16, i = 1; j < b; ++i) {
// RotWord
let t1 = result[j - 3];
let t2 = result[j - 2];
let t3 = result[j - 1];
let t4 = result[j - 4];
// SubWord
t1 = s[t1];
t2 = s[t2];
t3 = s[t3];
t4 = s[t4];
// Rcon
t1 ^= rcon[i];
for (let n = 0; n < 4; ++n) {
result[j] = t1 ^= result[j - 16];
j++;
result[j] = t2 ^= result[j - 16];
j++;
result[j] = t3 ^= result[j - 16];
j++;
result[j] = t4 ^= result[j - 16];
j++;
}
}
return result;
}
}
class AES256Cipher extends AESBaseCipher {
constructor(key) {
super();
this._cyclesOfRepetition = 14;
this._keySize = 224; // bits
this._key = this._expandKey(key);
}
_expandKey(cipherKey) {
const b = 240;
const s = this._s;
const result = new Uint8Array(b);
result.set(cipherKey);
let r = 1;
let t1, t2, t3, t4;
for (let j = 32, i = 1; j < b; ++i) {
if (j % 32 === 16) {
t1 = s[t1];
t2 = s[t2];
t3 = s[t3];
t4 = s[t4];
} else if (j % 32 === 0) {
// RotWord
t1 = result[j - 3];
t2 = result[j - 2];
t3 = result[j - 1];
t4 = result[j - 4];
// SubWord
t1 = s[t1];
t2 = s[t2];
t3 = s[t3];
t4 = s[t4];
// Rcon
t1 ^= r;
if ((r <<= 1) >= 256) {
r = (r ^ 0x1b) & 0xff;
}
}
for (let n = 0; n < 4; ++n) {
result[j] = t1 ^= result[j - 32];
j++;
result[j] = t2 ^= result[j - 32];
j++;
result[j] = t3 ^= result[j - 32];
j++;
result[j] = t4 ^= result[j - 32];
j++;
}
}
return result;
}
}
class PDFBase {
constructor() {
if (
(typeof PDFJSDev === "undefined" || PDFJSDev.test("TESTING")) &&
this.constructor === PDFBase
) {
unreachable("Cannot initialize PDFBase.");
}
}
_hash(password, input, userBytes) {
unreachable("Abstract method `_hash` called");
}
checkOwnerPassword(password, ownerValidationSalt, userBytes, ownerPassword) {
const hashData = new Uint8Array(password.length + 56);
hashData.set(password, 0);
hashData.set(ownerValidationSalt, password.length);
hashData.set(userBytes, password.length + ownerValidationSalt.length);
const result = this._hash(password, hashData, userBytes);
return isArrayEqual(result, ownerPassword);
}
checkUserPassword(password, userValidationSalt, userPassword) {
const hashData = new Uint8Array(password.length + 8);
hashData.set(password, 0);
hashData.set(userValidationSalt, password.length);
const result = this._hash(password, hashData, []);
return isArrayEqual(result, userPassword);
}
getOwnerKey(password, ownerKeySalt, userBytes, ownerEncryption) {
const hashData = new Uint8Array(password.length + 56);
hashData.set(password, 0);
hashData.set(ownerKeySalt, password.length);
hashData.set(userBytes, password.length + ownerKeySalt.length);
const key = this._hash(password, hashData, userBytes);
const cipher = new AES256Cipher(key);
return cipher.decryptBlock(ownerEncryption, false, new Uint8Array(16));
}
getUserKey(password, userKeySalt, userEncryption) {
const hashData = new Uint8Array(password.length + 8);
hashData.set(password, 0);
hashData.set(userKeySalt, password.length);
// `key` is the decryption key for the UE string.
const key = this._hash(password, hashData, []);
const cipher = new AES256Cipher(key);
return cipher.decryptBlock(userEncryption, false, new Uint8Array(16));
}
}
class PDF17 extends PDFBase {
_hash(password, input, userBytes) {
return calculateSHA256(input, 0, input.length);
}
}
class PDF20 extends PDFBase {
_hash(password, input, userBytes) {
// This refers to Algorithm 2.B as defined in ISO 32000-2.
let k = calculateSHA256(input, 0, input.length).subarray(0, 32);
let e = [0];
let i = 0;
while (i < 64 || e.at(-1) > i - 32) {
const combinedLength = password.length + k.length + userBytes.length,
combinedArray = new Uint8Array(combinedLength);
let writeOffset = 0;
combinedArray.set(password, writeOffset);
writeOffset += password.length;
combinedArray.set(k, writeOffset);
writeOffset += k.length;
combinedArray.set(userBytes, writeOffset);
const k1 = new Uint8Array(combinedLength * 64);
for (let j = 0, pos = 0; j < 64; j++, pos += combinedLength) {
k1.set(combinedArray, pos);
}
// AES128 CBC NO PADDING with first 16 bytes of k as the key
// and the second 16 as the iv.
const cipher = new AES128Cipher(k.subarray(0, 16));
e = cipher.encrypt(k1, k.subarray(16, 32));
// Now we have to take the first 16 bytes of an unsigned big endian
// integer and compute the remainder modulo 3. That is a fairly large
// number and JavaScript isn't going to handle that well.
// The number is e0 + 256 * e1 + 256^2 * e2... and 256 % 3 === 1, hence
// the powers of 256 are === 1 modulo 3 and finally the number modulo 3
// is equal to the remainder modulo 3 of the sum of the e_n.
const remainder = Math.sumPrecise(e.slice(0, 16)) % 3;
if (remainder === 0) {
k = calculateSHA256(e, 0, e.length);
} else if (remainder === 1) {
k = calculateSHA384(e, 0, e.length);
} else if (remainder === 2) {
k = calculateSHA512(e, 0, e.length);
}
i++;
}
return k.subarray(0, 32);
}
}
class CipherTransform {
constructor(stringCipherConstructor, streamCipherConstructor) {
this.StringCipherConstructor = stringCipherConstructor;
this.StreamCipherConstructor = streamCipherConstructor;
}
createStream(stream, length) {
const cipher = new this.StreamCipherConstructor();
return new DecryptStream(
stream,
length,
function cipherTransformDecryptStream(data, finalize) {
return cipher.decryptBlock(data, finalize);
}
);
}
decryptString(s) {
const cipher = new this.StringCipherConstructor();
let data = stringToBytes(s);
data = cipher.decryptBlock(data, true);
return bytesToString(data);
}
encryptString(s) {
const cipher = new this.StringCipherConstructor();
if (cipher instanceof AESBaseCipher) {
// Append some chars equal to "16 - (M mod 16)"
// where M is the string length (see section 7.6.2 in PDF specification)
// to have a final string where the length is a multiple of 16.
// Special note:
// "Note that the pad is present when M is evenly divisible by 16;
// it contains 16 bytes of 0x10."
const strLen = s.length;
const pad = 16 - (strLen % 16);
s += String.fromCharCode(pad).repeat(pad);
// Generate an initialization vector
const iv = new Uint8Array(16);
crypto.getRandomValues(iv);
let data = stringToBytes(s);
data = cipher.encrypt(data, iv);
const buf = new Uint8Array(16 + data.length);
buf.set(iv);
buf.set(data, 16);
return bytesToString(buf);
}
let data = stringToBytes(s);
data = cipher.encrypt(data);
return bytesToString(data);
}
}
class CipherTransformFactory {
static get _defaultPasswordBytes() {
return shadow(
this,
"_defaultPasswordBytes",
new Uint8Array([
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41, 0x64, 0x00, 0x4e, 0x56,
0xff, 0xfa, 0x01, 0x08, 0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a,
])
);
}
#createEncryptionKey20(
revision,
password,
ownerPassword,
ownerValidationSalt,
ownerKeySalt,
uBytes,
userPassword,
userValidationSalt,
userKeySalt,
ownerEncryption,
userEncryption,
perms
) {
if (password) {
const passwordLength = Math.min(127, password.length);
password = password.subarray(0, passwordLength);
} else {
password = [];
}
const pdfAlgorithm = revision === 6 ? new PDF20() : new PDF17();
if (
pdfAlgorithm.checkUserPassword(password, userValidationSalt, userPassword)
) {
return pdfAlgorithm.getUserKey(password, userKeySalt, userEncryption);
} else if (
password.length &&
pdfAlgorithm.checkOwnerPassword(
password,
ownerValidationSalt,
uBytes,
ownerPassword
)
) {
return pdfAlgorithm.getOwnerKey(
password,
ownerKeySalt,
uBytes,
ownerEncryption
);
}
return null;
}
#prepareKeyData(
fileId,
password,
ownerPassword,
userPassword,
flags,
revision,
keyLength,
encryptMetadata
) {
const hashDataSize = 40 + ownerPassword.length + fileId.length;
const hashData = new Uint8Array(hashDataSize);
let i = 0,
j,
n;
if (password) {
n = Math.min(32, password.length);
for (; i < n; ++i) {
hashData[i] = password[i];
}
}
j = 0;
while (i < 32) {
hashData[i++] = CipherTransformFactory._defaultPasswordBytes[j++];
}
// as now the padded password in the hashData[0..i]
hashData.set(ownerPassword, i);
i += ownerPassword.length;
hashData[i++] = flags & 0xff;
hashData[i++] = (flags >> 8) & 0xff;
hashData[i++] = (flags >> 16) & 0xff;
hashData[i++] = (flags >>> 24) & 0xff;
hashData.set(fileId, i);
i += fileId.length;
if (revision >= 4 && !encryptMetadata) {
hashData.fill(0xff, i, i + 4);
i += 4;
}
let hash = calculateMD5(hashData, 0, i);
const keyLengthInBytes = keyLength >> 3;
if (revision >= 3) {
for (j = 0; j < 50; ++j) {
hash = calculateMD5(hash, 0, keyLengthInBytes);
}
}
const encryptionKey = hash.subarray(0, keyLengthInBytes);
let cipher, checkData;
if (revision >= 3) {
i = 0;
hashData.set(CipherTransformFactory._defaultPasswordBytes, i);
i += 32;
hashData.set(fileId, i);
i += fileId.length;
cipher = new ARCFourCipher(encryptionKey);
checkData = cipher.encryptBlock(calculateMD5(hashData, 0, i));
n = encryptionKey.length;
const derivedKey = new Uint8Array(n);
for (j = 1; j <= 19; ++j) {
for (let k = 0; k < n; ++k) {
derivedKey[k] = encryptionKey[k] ^ j;
}
cipher = new ARCFourCipher(derivedKey);
checkData = cipher.encryptBlock(checkData);
}
} else {
cipher = new ARCFourCipher(encryptionKey);
checkData = cipher.encryptBlock(
CipherTransformFactory._defaultPasswordBytes
);
}
return checkData.every((data, k) => userPassword[k] === data)
? encryptionKey
: null;
}
#decodeUserPassword(password, ownerPassword, revision, keyLength) {
const hashData = new Uint8Array(32);
let i = 0;
const n = Math.min(32, password.length);
for (; i < n; ++i) {
hashData[i] = password[i];
}
let j = 0;
while (i < 32) {
hashData[i++] = CipherTransformFactory._defaultPasswordBytes[j++];
}
let hash = calculateMD5(hashData, 0, i);
const keyLengthInBytes = keyLength >> 3;
if (revision >= 3) {
for (j = 0; j < 50; ++j) {
hash = calculateMD5(hash, 0, hash.length);
}
}
let cipher, userPassword;
if (revision >= 3) {
userPassword = ownerPassword;
const derivedKey = new Uint8Array(keyLengthInBytes);
for (j = 19; j >= 0; j--) {
for (let k = 0; k < keyLengthInBytes; ++k) {
derivedKey[k] = hash[k] ^ j;
}
cipher = new ARCFourCipher(derivedKey);
userPassword = cipher.encryptBlock(userPassword);
}
} else {
cipher = new ARCFourCipher(hash.subarray(0, keyLengthInBytes));
userPassword = cipher.encryptBlock(ownerPassword);
}
return userPassword;
}
#buildObjectKey(num, gen, encryptionKey, isAes = false) {
const n = encryptionKey.length;
const key = new Uint8Array(n + 9);
key.set(encryptionKey);
let i = n;
key[i++] = num & 0xff;
key[i++] = (num >> 8) & 0xff;
key[i++] = (num >> 16) & 0xff;
key[i++] = gen & 0xff;
key[i++] = (gen >> 8) & 0xff;
if (isAes) {
key[i++] = 0x73;
key[i++] = 0x41;
key[i++] = 0x6c;
key[i++] = 0x54;
}
const hash = calculateMD5(key, 0, i);
return hash.subarray(0, Math.min(n + 5, 16));
}
#buildCipherConstructor(cf, name, num, gen, key) {
if (!(name instanceof Name)) {
throw new FormatError("Invalid crypt filter name.");
}
const self = this;
const cryptFilter = cf.get(name.name);
const cfm = cryptFilter?.get("CFM");
if (!cfm || cfm.name === "None") {
return function () {
return new NullCipher();
};
}
if (cfm.name === "V2") {
return function () {
return new ARCFourCipher(
self.#buildObjectKey(num, gen, key, /* isAes = */ false)
);
};
}
if (cfm.name === "AESV2") {
return function () {
return new AES128Cipher(
self.#buildObjectKey(num, gen, key, /* isAes = */ true)
);
};
}
if (cfm.name === "AESV3") {
return function () {
return new AES256Cipher(key);
};
}
throw new FormatError("Unknown crypto method");
}
constructor(dict, fileId, password) {
const filter = dict.get("Filter");
if (!isName(filter, "Standard")) {
throw new FormatError("unknown encryption method");
}
this.filterName = filter.name;
this.dict = dict;
const algorithm = dict.get("V");
if (
!Number.isInteger(algorithm) ||
(algorithm !== 1 && algorithm !== 2 && algorithm !== 4 && algorithm !== 5)
) {
throw new FormatError("unsupported encryption algorithm");
}
this.algorithm = algorithm;
let keyLength = dict.get("Length");
if (!keyLength) {
// Spec asks to rely on encryption dictionary's Length entry, however
// some PDFs don't have it. Trying to recover.
if (algorithm <= 3) {
// For 1 and 2 it's fixed to 40-bit, for 3 40-bit is a minimal value.
keyLength = 40;
} else {
// Trying to find default handler -- it usually has Length.
const cfDict = dict.get("CF");
const streamCryptoName = dict.get("StmF");
if (cfDict instanceof Dict && streamCryptoName instanceof Name) {
cfDict.suppressEncryption = true; // See comment below.
const handlerDict = cfDict.get(streamCryptoName.name);
keyLength = handlerDict?.get("Length") || 128;
if (keyLength < 40) {
// Sometimes it's incorrect value of bits, generators specify
// bytes.
keyLength <<= 3;
}
}
}
}
if (!Number.isInteger(keyLength) || keyLength < 40 || keyLength % 8 !== 0) {
throw new FormatError("invalid key length");
}
const ownerBytes = stringToBytes(dict.get("O")),
userBytes = stringToBytes(dict.get("U"));
// prepare keys
const ownerPassword = ownerBytes.subarray(0, 32);
const userPassword = userBytes.subarray(0, 32);
const flags = dict.get("P");
const revision = dict.get("R");
// meaningful when V is 4 or 5
const encryptMetadata =
(algorithm === 4 || algorithm === 5) &&
dict.get("EncryptMetadata") !== false;
this.encryptMetadata = encryptMetadata;
const fileIdBytes = stringToBytes(fileId);
let passwordBytes;
if (password) {
if (revision === 6) {
try {
password = utf8StringToString(password);
} catch {
warn(
"CipherTransformFactory: Unable to convert UTF8 encoded password."
);
}
}
passwordBytes = stringToBytes(password);
}
let encryptionKey;
if (algorithm !== 5) {
encryptionKey = this.#prepareKeyData(
fileIdBytes,
passwordBytes,
ownerPassword,
userPassword,
flags,
revision,
keyLength,
encryptMetadata
);
} else {
const ownerValidationSalt = ownerBytes.subarray(32, 40);
const ownerKeySalt = ownerBytes.subarray(40, 48);
const uBytes = userBytes.subarray(0, 48);
const userValidationSalt = userBytes.subarray(32, 40);
const userKeySalt = userBytes.subarray(40, 48);
const ownerEncryption = stringToBytes(dict.get("OE"));
const userEncryption = stringToBytes(dict.get("UE"));
const perms = stringToBytes(dict.get("Perms"));
encryptionKey = this.#createEncryptionKey20(
revision,
passwordBytes,
ownerPassword,
ownerValidationSalt,
ownerKeySalt,
uBytes,
userPassword,
userValidationSalt,
userKeySalt,
ownerEncryption,
userEncryption,
perms
);
}
if (!encryptionKey) {
if (!password) {
throw new PasswordException(
"No password given",
PasswordResponses.NEED_PASSWORD
);
}
// Attempting use the password as an owner password
const decodedPassword = this.#decodeUserPassword(
passwordBytes,
ownerPassword,
revision,
keyLength
);
encryptionKey = this.#prepareKeyData(
fileIdBytes,
decodedPassword,
ownerPassword,
userPassword,
flags,
revision,
keyLength,
encryptMetadata
);
}
if (!encryptionKey) {
throw new PasswordException(
"Incorrect Password",
PasswordResponses.INCORRECT_PASSWORD
);
}
if (algorithm === 4 && encryptionKey.length < 16) {
// Extend key to 16 byte minimum (undocumented),
// fixes issue19484_1.pdf and issue19484_2.pdf.
this.encryptionKey = new Uint8Array(16);
this.encryptionKey.set(encryptionKey);
} else {
this.encryptionKey = encryptionKey;
}
if (algorithm >= 4) {
const cf = dict.get("CF");
if (cf instanceof Dict) {
// The 'CF' dictionary itself should not be encrypted, and by setting
// `suppressEncryption` we can prevent an infinite loop inside of
// `XRef_fetchUncompressed` if the dictionary contains indirect
// objects (fixes issue7665.pdf).
cf.suppressEncryption = true;
}
this.cf = cf;
this.stmf = dict.get("StmF") || Name.get("Identity");
this.strf = dict.get("StrF") || Name.get("Identity");
this.eff = dict.get("EFF") || this.stmf;
}
}
createCipherTransform(num, gen) {
if (this.algorithm === 4 || this.algorithm === 5) {
return new CipherTransform(
this.#buildCipherConstructor(
this.cf,
this.strf,
num,
gen,
this.encryptionKey
),
this.#buildCipherConstructor(
this.cf,
this.stmf,
num,
gen,
this.encryptionKey
)
);
}
// algorithms 1 and 2
const key = this.#buildObjectKey(
num,
gen,
this.encryptionKey,
/* isAes = */ false
);
const cipherConstructor = function () {
return new ARCFourCipher(key);
};
return new CipherTransform(cipherConstructor, cipherConstructor);
}
}
export {
AES128Cipher,
AES256Cipher,
ARCFourCipher,
CipherTransformFactory,
PDF17,
PDF20,
};